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Abstract

A comprehensive theoretical study of the magnetic exchange between Co2� ions is reported. Using the microscopic background

we deduce the general Hamiltonian for a corner-shared bioctahedral system involving kinetic exchange, spin�/orbit coupling and

low-symmetry local crystal field. This Hamiltonian acting within orbitally degenerate ground manifold 4(T1g)A �/
4(T1g)B of the

cobalt pair is expressed in terms of orbital and spin operators. We elucidate the major electronic factors controlling the exchange

anisotropy in the Co(II) pairs. The degree of the magnetic anisotropy is shown to depend on the strength of the cubic crystal field

and on the relative efficiency of two kinds of electron transfer pathways (e �/e and t2�/t2) contributing to the kinetic exchange. An

unusual role of spin�/orbit interaction is revealed. This interaction tends to reduce the anisotropy caused by the orbitally dependent

exchange. Finally, we discuss conditions of the applicability of the isotropic Lines’ model conventionally accepted in

magnetochemistry of cobalt clusters.

# 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The study of the factors governing the magnetic

anisotropy in transition metal compounds is directly

related to the problem of the rational design of new

single molecular magnets. In this view the systems

comprising ions with unquenched orbital angular mo-

menta seem to be quite attractive. Among them the

exchange coupled polynuclear compounds of cobalt(II)

are especially interesting as the systems exhibiting strong

orbital contributions to the magnetic moments and thus

strong magnetic anisotropy. This orbital magnetism

arises from the ground orbital triplet 4T1 of each

cobalt(II) ion in a cubic crystal surrounding.

The study of the magnetic properties of the magnetic

materials containing cobalt(II) ions always called many

difficult theoretical questions which are still open. These

questions arise mainly from the intrinsic complexity that

is peculiar to the problem of the magnetic exchange in

the presence of the unquenched orbital angular mo-

menta. Most of the works dealing with the magnetic

properties of cobalt complexes have been performed in

the framework of the Lines theory [1,2] proposed more

than 30 years ago. Lines developed an approximate

approach to the problem of the magnetic exchange in

which the low-lying levels of individual ions (Kramers

doublets) stabilized by the relatively strong spin�/orbit

coupling are treated quantum-mechanically meanwhile

the excited states are taken into account using molecular

field approximation. This theory deals with the situation

when the cobalt ions occupy perfect octahedral sites and

hence no magnetic anisotropy is imposed. Recently axial

distortions of the octahedral surrounding of cobalt ions

were taken into account [3,4]. Finally, the approach [5]

based on the application of the irreducible tensor
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operator technique enabled to advance in the diagona-

lization of the Hamiltonian that includes spin�/orbit

coupling, axial and rhombic distortions, exchange and

Zeeman interactions. Providing more precise results this
method encounters computational difficulties arising

from the high dimensionalities of the energy matrices.

Irrespective of the computational difficulties the

Lines’ approach and all subsequent studies face a

conceptual challenge. In fact, all theoretical studies of

the cobalt clusters based on the assumption that the

exchange interaction between cobalt ions is described by

the Heisenberg Hamiltonian Hex�/�/2JSASB acting in
the spin space with SA �/SB �/3/2. This simple form of

the exchange has been successfully used in description of

some cobalt(II) cluster compounds [3�/6]. Nevertheless

the study of the exchange interaction between orbitally

degenerate ions [7�/13] clearly demonstrated that the

isotropic model, in general, is not applicable. In his basic

paper [1] Lines mentioned this crucial issue, but the

discussion of the applicability of the Heisenberg Ha-
miltonian remained out of the framework of his theory.

Here we propose a more comprehensive approach to

the problem of exchange interaction in cobalt(II)

clusters. This approach is based on the effective

Hamiltonian that involves both spin and orbital degrees

of freedom and takes into account orbital degeneracy of

Co(II) ions. To build this Hamiltonian we use the

microscopic theory of the kinetic exchange between
the orbitally degenerate ions that explicitly takes into

account the relevant electron transfer pathways as well

as the local interactions (cubic and low-symmetry crystal

fields, intrasite Coulomb and exchange interactions, and

spin�/orbit coupling). As distinguished from the Heisen-

berg Hamiltonian, the present Hamiltonian is essentially

anisotropic. An important advantage of the microscopic

approach is that it allows us to comprehend the under-
lying mechanisms of the magnetic anisotropy or, in

other words, to realize how the magnetic anisotropy of

the system depends on the basic parameters. In parti-

cular, we will demonstrate that under some conditions

the anisotropy vanishes and hence the Lines theory

proves to be applicable.

2. Kinetic exchange Hamiltonian for Co(II)-dimer

Hereunder we will derive the kinetic exchange Ha-

miltonian for the pair of equivalent Co(II) ions occupy-

ing the octahedral sites. In this case the ground state of

each Co(II) ion is the orbitally degenerate state 4T1g, so

the Heisenberg spin Hamiltonian of the form Hex�/�/

2JSASB is not adequate to describe the exchange

interaction and a more complicated Hamiltonian invol-
ving both spin and orbital operators is required.

Kinetic exchange appears as a second order contribu-

tion with respect to the intercenter hopping operator

that acts as a perturbation. The effective second-order

exchange Hamiltonian operating within the ground

manifold [4T1g(d7)]A �/[4T1g(d7)]B of the pair can be

represented as follows:

H ex��
1

U

X
GAGBG?AG?B

X
gAgBg?Ag?B

t(GAgA; GBgB)t(G?Ag?A; G?Bg?B)

�
X
ss?

(c�GAgAs
cG?Ag?As?cGBgBs

c�G?Bg?Bs?

�c�GBgBs
cG?Bg?As?cGAgAs

c�G?Ag?As?) (1)

Here the operator C�
Gigis

(CGigis
) creates (annihilates)

electron with spin projection s on the magnetic orbital
8Gigi

of the ion i, Gi�/t2 or e , gi label one-electron basis,

and t is the hopping integral. We will use the real one-

electron cubic basis related to the Cartesian local

coordinate frames, so gi runs over ji8/yizi, hi8/xizi,

zi8/xiyi (t2�/basis) and ui8/3zi
2�/ri

2, ni8/�3(xi
2�/yi

2) (e-

basis). Finally, U is the excitation energy for the electron

transfer from one magnetic center to the other resulting

in charge-transfer (CT) electronic configurations (d8)A �/

(d6)B and (d6)A �/(d8 )B . It is to be noted that different CT

states have, in general, different energies which can be

expressed in terms of the cubic crystal field (Dq ) and

Racah (A , B , C ) parameters for the oxidized and

reduced Co ions. A more comprehensive theory of the

kinetic exchange that takes into account complex multi-

plet structure of the excited CT states implied by the

Tanabe�/Sugano diagrams has been developed recently
in Refs. [9�/13] and applied to the analysis of the

magnetic properties of [Ti2Cl9]3� anion. The energy

pattern of Co(II) is much more complicated so that

consideration of Co systems requires some simplifica-

tions. For the sake of simplicity we neglect the

differences between the excitation energies assuming

that A �/B , C , Dq .

Using tensorial properties of the creation and annihi-
lation operators one can express the Hamiltonian in

terms of many-electron orbital and spin operators. The

details of this procedure can be found in Refs.[9�/13].

Here we give only the final expression for the kinetic

exchange Hamiltonian:

H ex�
1

U

X
GAGBG?AG?B

X
gAgBg?Ag?B

t(GAgA; GBgB)t(G?Ag?A; G?Bg?B)

�
X
GG?

X
gg?

hGAgAG?Ag?A½Ggi

� hGBgBG?Bg?B½G?g?iOA
GgO

B
G?g? [F

(0)
GG?(GAG?AGBG?B)

�F
(1)
GG?(GAG?AGBG?B)SASB] (2)

In Eq. (2) Oi
Gg are the matrices of the cubic irreducible

tensor operators acting within the orbital T1g-manifold

of the center i and Si are the spin operators. The orbital

operators are defined in such a way that
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hT1gkOi
GkT1gi�

ffiffiffi
3

p
; so the matrix elements of these

operators coincide with the Clebsch�/Gordan coeffi-

cients appearing in the Wigner�/Eckart theorem [14].

The explicit forms of orbital matrices Oi
Gg are given in

Refs. [9,12]. Finally, t(GAgA , GBgB) is the transfer

integral that links orbitals GAgA and GBgB .

3. Parameters of the kinetic exchange Hamiltonian for a

corner-shared Co(II)-dimer of D4h symmetry

For the evaluation of the parameters F(0)
GG? and F(1)

GG? in

the Hamiltonian Eq. (2) one has to know the explicit

form of the wave-function of the ground state of

octahedrally coordinated Co(II) ion and the overall

symmetry of the pair. The wave-function of the ground
state is a mixture of two 4T1g terms14 arising from strong

crystal field electronic configurations t5
2ge2

g and t4
2ge3

g:

Fg( 4T1g)�C1F[t5
2g( 2T2g)e2

g( 3A2g); 4 T1g]

�C2F[t4
2g( 3T1g)e3

g( 2Eg); 4 T1g] (3)

where the coefficients are of the following form:

C1�
1ffiffiffi
2

p
�

1�
9B � 10Dq

[(9B � 10Dq)2 � 144B2]1=2

�1=2

;

C2�
1ffiffiffi
2

p
�

1�
9B � 10Dq

[(9B � 10Dq)2 � 144B2]1=2

�1=2

(4)

Providing Dq /B �/1 (weak crystal field limit) one finds

C1:2=
ffiffiffi
5

p
; C2:1=

ffiffiffi
5

p
(4F -state of a free Co(II)-ion).

In the opposite case of strong crystal field limit Dq /B �/

1 one obtains C1�/1, C2�/0.

Let us specify now the overall geometry of the Co(II)-

dimer and consider a corner-shared bioctahedral system

belonging to the point group D4h . As one can see from

Fig. 1 the main contributions to the superexchange in

this case arise from the most efficient transfer pathways

jl/j , hl/h (p-transfer) and u l/u (s-transfer). The

corresponding transfer integrals will be denoted as t(jA ,

jB )�/t(hA , hB)�/tp and t (uA, uB)�/ts . Retaining only

these dominant contributions one can express kinetic

exchange Hamiltonian as:

H ex�R0�R1SASB (5)

where R0 and R1 contain the orbital operators and have

the following form:

The parameters in Eq. (6) are calculated using the

method described above, the results are given by Eq. (7).

Eq. (7) combined with Eq. (4) provides the dependencies

of the parameters of the Hamiltonian on the strength of

the cubic crystal field (parameter B /Dq ). An efficient

procedure for treating orbitally dependent exchange

Hamiltonian was suggested in our recent paper [12].

Following this procedure one can express the cubic

irreducible tensors Oi
Gg defined in T1g space through the

Fig. 1. The overlaps related to the relevant transfer pathways in a

dimer of D4h symmetry.
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irreducible tensor operators of R3-group (for the details

see Ref. [12]).

4. Full Hamiltonian

There are several more interactions that are relevant

to the system under consideration and should be taken

into account in the model aimed to provide adequate

description of the magnetic properties of the system of

exchange-coupled Co(II)-ions. These interactions are

the following:
(i) Spin�/orbit coupling that splits the ground 4T1g

term of Co(II) ion into G6 (ground Kramers doublet), G7

and two quadruplets G8. The operator of spin�/orbit

interaction acting within the ground manifold with

fictious orbital angular momenta LA �/LB �/1 is given

by:

HSO�kal(LASA�LBSB) (8)

where l is the spin�/orbit parameter for a free ion (l:/

�/180 cm�1) for Co(II)), k is the orbital reduction factor

that takes into account covalence effect. Depending on

the ligands this factor for Co(II) can vary from 0.6 to

0.9. The factor a is introduced to distinguish between

the matrix elements of the orbital angular momentum

operator calculated with the wave-functions of the

ground 4Ti g term with those calculated within P -basis.
One can easily find that:

a�
3

2
C2

2 �(C1�C2)2 (9)

Eq. (9) describes the dependence of a -factor on the
strength of the cubic crystal field. In the weak field limit

one obtains that a�/�/3/2 (the value used in most of the

studies dealing with the magnetism of Co(II)-com-

pounds including Lines theory [1,2]) and in strong

crystal field limit one gets a�/�/1.

(ii) Low-symmetry crystal field operator. Very often

the symmetry of the ligand environments of Co(II) ions

is lower than Oh , so the additional components of the
crystal field split the orbital triplet 4T1g. The operator

responsible for axial and rhombic distortions can be

expressed in a conventional form:

F
(0)
A1A1

(t2t2t2t2)��
1

3
(5C2

1 �4C2
2)(C2

1 �2C2
2 ) F
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4

27
(C2
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2 )2
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Hcr�
X

i�A;B

�
D

�
L2

iZ�
1

3
Li(Li�1)

�
�E(L2

iX �L2
iY )

�

(10)

where D and E are the parameters of axial and rhombic

distortions, respectively. While writing Eq. (10) we took
into account that in the present study both metal sites

are assumed to occupy structurally equivalent sites and

hence DA �/DB �/D and EA �/EB �/E .

(iii) Zeeman interaction operator can be represented

as follows:

HZ �b(akL�geS)H (11)

where L�/LA�/LB and S�/SA�/SB are the operators of

total orbital angular momentum and spin of dimer,
respectively.

Our aim is to find the eigenvalues and the eigen-states

of the full Hamiltonian involving all interactions intro-

duced above:

H�HSO�Hcr�Hex�HZ (12)

To solve this problem one has to choose an appropriate

basis for the dimer. The most convenient choice of this
basis corresponds to the Russell�/Saunders scheme in

which two fictious local orbital angular momenta LA �/

LB �/1 are coupled to give the total orbital angular

momentum L�/0, 1, 2 and the local spins SA �/SB �/3/2

are coupled to give the total spin S�/0, 1, 2. So, the

matrix of the Hamiltonian (Eq. (12)) will be built using

the wave-functions jLSMLLS� as a basis. Using the

irreducible tensor operator technique for R3 group [15]
one can calculate the matrix elements of all operators

involved in Eq. (12). We will not present here rather

complicated expressions for the matrix elements and

proceed to the discussion of the factors controlling the

exchange anisotropy.

5. Discussion of the exchange anisotropy

As was already mentioned, in all approaches so far

proposed for the description of the magnetic properties

of Co(II) system, the exchange interaction between

cobalt ions was assumed to have a simple Heisenberg
form. At the same time the validity of the isotropic

exchange model in the case of orbital degeneracy is not

clear a priori . In this view it seems to be important to

elucidate the main factors resulting in the origin of the

exchange anisotropy in cobalt systems.

In order to realize with the utmost clarity the

particular role of the main factors affecting the exchange

anisotropy we will exclude the low-symmetry crystal
fields from the consideration assuming thus that Co(II)

ions are in the perfect octahedral ligand fields. At the

first stage of the discussion we will exclude also the

spin�/orbit coupling and focus on the exchange interac-

tion. Let us discuss separately different factors control-

ling the anisotropy.

5.1. Role of the cubic crystal field and e �/e transfer

Let us start with the limit case when the transfer

integral tp is negligible comparatively to ts . Fig. 2(a)

shows the temperature dependence of the magnetic
susceptibility of the pair calculated for different values

of cubic crystal field providing tp�/0. One can see that

in a strong crystal field limit B /Dq�/0 the system does

Fig. 2. Illustration for two factors resulting in the exchange aniso-

tropy: (a) x vs. T curves for different values B /Dq (only s -transfer is

involved); (b) x vs. T curves for different values tp/ts and B /Dq�/0.

Here and in Fig. 3 the curves for x� are shown by solid lines and forx�
by dashed lines.
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not posses magnetic anisotropy. In general case (B /

Dq "/0) the curves x vs. T exhibit a negative magnetic

anisotropy (Dx�/x��/x�B/0) in the full temperature

range. The magnetic anisotropy jDx j increases when we
pass from the strong crystal field limit (isotropic case) to

the weak crystal field limit when the mixing of two

strong field 4T1 terms is most efficient (maximal

anisotropy). The isotropic result in the former case can

be easily extracted from Eqs. (6) and (7). In fact by

setting tp�/0, C1�/0, C2�/0, (B /Dq�/0) one immedi-

ately arrives at the Heisenberg Hamiltonian:

Hex�
t2
s

U

�
�1�

4

9
SASB

�
(13)

To realize the physical origin of the magnetic behavior

depicted in Fig. 2(a) one can inspect the electronic

subshells participating in the transfer processes. In fact,

in the case under consideration the ground state of each
Co(II) ion is F[t5

2g( 2T2g)e2
g( 3A2g); 4 T1g]; so ts transfer

connects (via excited states) the orbitally non-degenerate

subshells e2
g( 3A2g); resulting thus in the Heisenberg-type

interaction. In general (B /Dq "/0) the ground state

involves also a contribution of F[t4
2g( 3T1g)e3

g( 2Eg); 4 T1g]

containing orbitally degenerate subshell e3
g( 2Eg): This

results in the anisotropic contributions to the Hamilto-

nian. In fact, when B /Dq "/0 one finds that C2"/0 and
hence the terms containing OA

EuOB
Eu and OA

A1
OB

Eu�/

OA
EuOB

A1
will appear along with the isotropic term.

Applying the relation Oi
Eu �/1�/3/2L2

iZ one can see

that these terms are expressed through L2
AZ , L2

BZ and

the product L2
AZL2

BZ . These terms produce a splitting of

the eigenvalues of the isotropic Hamiltonian, Eq. (13),

resulting thus in the axial exchange anisotropy.

5.2. Role of the t2�/t2-transfer

The electron transfer between t2 orbitals links orbi-

tally degenerate t5
2g( 2T2g) subshells and for this reason

this kind of transfer is expected to be an another origin

of the exchange anisotropy. The role of t2�/t2-transfer

pathways in the limit of strong crystal field is illustrated

in Fig. 2(b). In this case the exchange anisotropy

associated with the electron hoppings between e -orbitals

is excluded (only orbitally non-degenerate e2
g( 3A2g) sub-

shells participate in ts transfer), so providing tp�/0 the

system exhibits isotropic magnetic behavior. When tp"/

0 the anisotropy appears due to the contribution of the

orbitally degenerate t5
2g( 2T2g) subshells. As distinguished

from the previous case, now the magnetic anisotropy is

positive.

It should be noted that the values of B /Dq in Co(II)

complexes are usually far from those in the strong
crystal field limit. For example, the experimental values

for the complexes with H2O ligands [14] are Dq�/840

cm�1, B�/970 cm�1. Also, in reality, the transfer

between t2-orbitals can not often be neglected. Therefore

the anisotropy of the magnetic exchange is, in general, a

result of the interplay of both named contributions.

To complete this discussion we will compare a

realistic situation when the spin�/orbit parameter is

taken to be l�/�/180 cm�1 with the idealized situation

when only the exchange interaction is operative but

spin�/orbit interaction is excluded. Fig. 3(a) shows x vs.

T curves for these two cases providing tp�/0 when only

the exchange anisotropy induced by cubic crystal field

(B /Dq "/0) is retained. One can see that at l�/0 the

anisotropy is very high and positive. When the spin-

orbit coupling is included the magnetic anisotropy

changes the sign being at the same time strongly reduced

comparatively to the case l�/0.

The same two cases for the strong field limit (B /Dq�/

0) and tp�/0.5ts are shown in Fig. 3b. In this case x�

Fig. 3. Effect of reduction of the exchange anisotropy by spin�/orbit

interaction: (a) x vs. T curves for B /Dq "/0, tp�/0; (b) x vs. T curves

for B /Dq�/0, tp"/0.
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diverges at low temperatures when l�/0. This diver-

gence appears due to first order orbital magnetic

contribution tox� while only a second order magnetic

effect contributes tox�. When l"/0 the situation is
similar to that previously considered, namely, the spin�/

orbit coupling strongly reduces the exchange anisotropy

and changes its sign.

6. Concluding remarks

In this paper a comprehensive microscopic approach

to the problem of the exchange interaction between
cobalt(II) ions is developed. We have deduced the

kinetic exchange Hamiltonian for corner-shared biocta-

hedral Co(II) pair of D4h symmetry, taking into account

the relevant hopping integrals of s - and p-types. An

important effect of mixing of two 4Ti terms arising from

the electronic configurations t5
2e2 and t4

2e3 is taken into

account. The main difference between our theory and

the theory of Lines and subsequent studies is to be
emphasized. In the Lines’ approach [1,2] the un-

quenched orbital angular momenta of cobalt ions is

taken into account through the inclusion of the spin�/

orbit coupling and orbital part of Zeeman interaction.

At the same time the exchange interaction is assumed to

be of the isotropic form. Therefore, in this theory the

unquenched orbital angular momenta by no means

manifests itself in the exchange interaction. On the
contrary, in the present paper the exchange Hamiltonian

includes both spin and orbital operators and is essen-

tially anisotropic. Along with the interactions directly

involved in the exchange our approach includes also the

spin�/orbit coupling that is inherent to the magneto-

chemistry of cobalt(II) ion and non-cubic crystal fields.

All these interactions are expressed through the sphe-

rical irreducible tensor operators that provides an
efficient way to treat the Hamiltonian. To summarize,

the following results are to emphasized:

(1) When only the transfer between e-orbitals is

operative and B /Dq "/0, the exchange anisotropy is

negative (x��/x�). This anisotropy appears due to the

mixing of two strong field 4Ti terms. The absolute value

of the anisotropy increases with the decrease of cubic

crystal field (increase of B /Dq ). In the strong crystal
field limit (B /Dq�/0) the system becomes magnetically

isotropic.

(2) When B /Dq�/0 and both kinds of transfer

processes (e�/eand t2�/t2) are active, the anisotropy is

of the opposite sign.

(3) If B /Dq "/0 and both transfer processes are

involved, the sign of the anisotropy is determined by

the competition of the contributions described in items
(1) and (2).

In addition to these results it should be underlined

that spin�/orbit coupling can significantly reduce the

exchange anisotropy. This is due to the fact that spin�/

orbit coupling operator does not commute with the

exchange Hamiltonian. In other words spin�/orbit

coupling tends to keep spherical symmetry linking spin

and orbital angular momenta on each site and reducing

thus axial anisotropy caused by the orbitally dependent

exchange. To make this assertion more clear the analogy

with the situation in the Jahn�/Teller systems seems to

be relevant. In fact, spin�/orbit coupling reduces Jahn�/

Teller distortions restoring thus spherical symmetry.

Note that the ability of the spin�/orbit coupling to

suppress the magnetic anisotropy is in contradiction

with the conventional belief that the spin�/orbit interac-

tion always favors the anisotropy. In general, this is true

only for the individual Co2� ions in which the spin�/

orbit coupling acts together with the local non-cubic

crystal fields. In clusters along with this anisotropy the

exchange anisotropy appears and this anisotropy is

subjected to reduction by spin�/orbit coupling.

The results outlined clearly show that the isotropic

Lines model proves to be a good approximation if the

cubic crystal field is strong and the parameters of t2�/t2

transfer are negligible as compared to those for e �/e

transfer. Besides, the item (3) demonstrates that the

Lines approach can be applicable also for some specific

relationships between the t2�/t2 transfer parameters and

the value of B /Dq . In this situation the exchange

anisotropy can become small as a result of interplay of

two competing contributions. Finally the discussion of

the role of spin�/orbit coupling shows that the last

makes less rigorous the restrictions of this theory

implied by the anisotropy of exchange interaction. These

arguments could probably explain why the Lines’ theory

proved to be successful in many cases despite the fact of

completely ignoring the anisotropic orbital contribu-

tions to the exchange.
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